Mean Aspects Controlling Supercritical CO2 Precipitation Processes

  1. Montes, Antonio
  2. Pereyra, Clara
  3. J. Martínez de la Ossa, Enrique
Libro:
Heat and Mass Transfer - Advances in Science and Technology Applications

Editorial: IntechOpen

ISBN: 978-1-78984-447-4 978-1-78984-446-7

Año de publicación: 2019

Tipo: Capítulo de Libro

DOI: 10.5772/INTECHOPEN.85735 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

The use of supercritical CO2 is an excellent alternative in extraction, particle precipitation, impregnation and reaction processes due to its special properties. Solubility of the compound in supercritical CO2 drives the precipitation process in different ways. In supercritical antisolvent process, mass and heat transfers, phase equilibria, nucleation, and growth of the compound to be precipitated are the main phenomena that should be taken into account. Mass transfer conditions the morphology and particle size of the final product. This transfer could be tuned altering operating conditions. Heat transfer in non-isothermal process influences on mixing step the size of generated microparticles. In rapid expansion of supercritical solution, phenomena as the phase change from supercritical to a CO2 gas flow, rapid mass transfer and crystallization of the compound, and expansion jet define the morphology and size of the final product. These phenomena a priori could be modulated tuning a large number of operating parameters through the experiments, but the correlations and modeling of these processes are necessary to clarify the relative importance of each one. Moreover, particle agglomeration in the expansion jet and CO2 condensation are determinant phenomena which should be avoided in order to conserve fine particles in the final product.

Referencias bibliográficas

  • He WZ, Suo QL, Jiang ZH, Shan A, Hong H. Precipitation of ephedrine by SEDS process using a specially designed prefilming atomizer. Journal of Supercritical Fluids. 2004;31:101-110. DOI: 10.1016/j.supflu.2004.01.009
  • Franco P, Reverchon E, De Marco I. PVP/ketoprofen coprecipitation using supercritical antisolvent process. Powder Technology. 2018;340:1-7. DOI: 10.1016/j.powtec.2018.09.007
  • Franco P, Reverchon E, De Marco I. Zein/diclofenac sodium coprecipitation at micrometric and nanometric range by supercritical antisolvent processing. Journal of CO2 Utilization. 2018;27:366-373. DOI: 10.1016/j.jcou.2018.08.015
  • Yoon TJ, Son W-S, Park HJ, Seo B, Kim T, Lee Y-W. Tetracycline nanoparticles precipitation using supercritical and liquid CO2 as antisolvents. Journal of Supercritical Fluids. 2016;107:51-60. DOI: 10.1016/j.supflu.2015.08.014
  • Guamán-Balcázar MC, Montes A, Pereyra C, Martínez de la Ossa E. Production of submicron particles of the antioxidants of mango leaves/PVP by supercritical antisolvent extraction process. The Journal of Supercritical Fluids. 2019;143:294-304. DOI: 10.1016/j.supflu.2018.09.007
  • Arango-Ruiz A, Martin A, Cocero MJ, Jiménez C, Londoño J. Encapsulation of curcumin using supercritical antisolvent (SAS) technology to improve its stability and solubility in water. Food Chemistry. 2018;258:156-163. DOI: 10.1016/j.foodchem.2018.02.088
  • Kodama T, Honda M, Machmudah S, Diono W, Kanda H, Goto M. Crystallization of All trans–β–carotene by Supercritical Carbon Dioxide Antisolvent via Co–axial Nozzle. Engineering Journal. 2018;22(3):25-38. DOI: 10.4186/ej.2018.22.3.25
  • Vorobei AM, Ustinovich KB, Pokrovskiy OI, Parenago OO, Lunin VV. Preparation of Hydroxypropylmethylcellulose Microparticles Using Supercritical Antisolvent Precipitation. Russian Journal of Physical Chemistry B. 2015;9:1103-1108. DOI: 10.1134/S1990793115080114
  • Prosapio V, Reverchon E, De Marco I. Polymers' ultrafine particles for drug delivery systems precipitated by supercritical carbon dioxide + organic solvent mixtures. Powder Technology. 2016;292:140-148. DOI: 10.1016/j.powtec.2016.01.033
  • Da Silva EP, Winkler MEG, Giufrida WM, Cardozo-Filho L, Alonso CG, Lopes JBO, et al. Effect of phase composition on the photocatalytic activity of titanium dioxide obtained from supercritical antisolvent. Journal of Colloid and Interface Science. 2019;535:245-254. DOI: 10.1016/j.jcis.2018.09.098
  • Montes A, Williamson D, Hanke F, Garcia-Casas I, Pereyra C. Martínez de la Ossa E, Teipel U, New insights into the formation of submicron silica particles using CO2 as anti-solvent. The Journal of Supercritical Fluids. 2018;133:218-224. DOI: 10.1016/j.supflu.2017.10.013
  • Montes A, Wehner L, Pereyra C, Martínez de la Ossa EJ. Precipitation of submicron particles of rutin using supercritical antisolvent process. Journal of Supercritical Fluids. 2016;2016(118):1-10. DOI: 10.1016/j.supflu.2016.07.020
  • Montes A, Wehner L, Pereyra C, Martínez de la Ossa EJ. Generation of microparticles of ellagic acid by supercritical antisolvent process. Journal of Supercritical Fluids. 2016;116:101-110. DOI: 10.1016/j.supflu.2016.05.019
  • Montes A, Wehner L, Pereyra C, Martínez De La Ossa EJ. Mangiferin nanoparticles precipitation by supercritical antisolvent process. Journal of Supercritical Fluids. 2016;112:44-50. DOI: 10.1016/j.supflu.2016.02.008
  • Montes A, Williamson D, Hanke F, Garcia-Casas I, Pereya C, Martínez de la Ossa E, et al. New insights into the formation of submicron silica particles using CO2 as anti-solvent. The Journal of Supercritical Fluids. 2018;133:218-224. DOI: 10.1016/j.supflu.2017.10.013
  • Harrison JJ, Lee C, Lenzer T, Oum K. On-line in-situ characterization of CO RESS processes for benzoic acid, cholesterol and aspirin. Green Chemistry. 2007;9:351-356. DOI: 10.1039/b612055e
  • Corazza ML, Filho CL, Dariva C. Modeling and simulation of rapid expansion of supercritical solutions. Brazilian Journal of Chemical Engineering. 2006;23(3):417-425. DOI: 10.1590/S0104-66322006000300015
  • Huang J, Moriyoshi T. Fabrication of fine powders by RESS with a clearance nozzle. Journal of Supercritical Fluids. 2006;37:292-297. DOI: 10.1016/j.supflu.2005.11.024
  • Türk M, Bolten D. Polymorphic properties of micronized mefenamic acid, nabumetone, paracetamol and tolbutamide produced by rapid expansion of supercritical solutions (RESS). Journal of Supercritical Fluids. 2016;116:239-250. DOI: 10.1016/j.supflu.2016.06.001
  • Sodeifian G, Sajadian SA, Daneshyan S. Preparation of Aprepitant nanoparticles (efficient drug for coping with the effects of cancer treatment) by rapid expansion of supercritical solution with solid cosolvent (RESS-SC). The Journal of Supercritical Fluids. 2018;140:72-84. DOI: 10.1016/j.supflu.2018.06.009
  • Uchida H, Nishijima M, Sano K, Demoto K, Sakabe J, Shimoyama Y. Production of theophylline nanoparticles using rapid expansion of supercritical solutions with a solid cosolvent (RESS-SC) technique. Journal of Supercritical Fluids. 2015;105:128-135. DOI: 10.1016/j.supflu.2015.05.005
  • Montes A, Litwinowicz A, Gradl U, Gordillo MD, Pereyra C, Martínez de la Ossa EJ. Exploring high operating conditions in the ibuprofen precipitation by RESS process. Industrial and Engineering Chemistry Research. 2014;53:474-480. DOI: 10.1021/ie402408j
  • Montes A, Bendel A, Kürti R, Gordillo MD, Pereyra C, Martínez de la Ossa EJ. Processing naproxen with supercritical CO2. Journal of Supercritical Fluids. 2013;75:21-29. DOI: 10.1016/j.supflu.2012.12.016
  • Huang Z, Sun GB, Chiew YC, Kawi S. Formation of ultrafine aspirin particles through rapid expansion of supercritical solutions (RESS). Powder Technology. 2005;160:127-134. DOI: 10.1016/j.powtec.2005.08.024
  • Turk M, Bolten D. Formation of submicron poorly water-soluble drugs by rapid expansion of supercritical solution (RESS): Results for Naproxen. Journal of Supercritical Fluids. 2010;55:778-785. DOI: 10.1016/j.supflu.2010.09.023
  • Wang J, Chen J, Yang Y. Micronization of titanocene dichloride by rapid expansion of supercritical solution and its ethylene polymerization. Journal of Supercritical Fluids. 2005;33:159-172. DOI: 10.1016/j.supflu.2004.05.006
  • Yildiz N, Tuna S, Doker O, Calimli A. Micronization of salicylic acid and taxol (paclitaxel) by rapid expansion of supercritical fluids (RESS). Journal of Supercritical Fluids. 2007;41:440-451. DOI: 10.1016/j.supflu.2006.12.012
  • Montes A, Merino R, De los Santos DM, Pereyra C, Martínez de la Ossa EJ. Micronization of vanillin by rapid expansion of supercritical solutions process. Journal of CO2 Utilization. 2017;21:169-176. DOI: 10.1016/j.jcou.2017.07.009
  • Werling JO, Debenedetti PG. Numerical modeling of mass transfer in the supercritical antisolvent process. Journal of Supercritical Fluids. 1999;16:167-181. DOI: 10.1016/S0896-8446(00)00054-1
  • Montes A, Gordillo MD, Pereyra C, Martínez de la Ossa EJ. Supercritical CO2 precipitation of poly (L-lactic acid) in a wide range of miscibility. Journal of Supercritical Fluids. 2013;81:236-244. DOI: 10.1016/j.supflu.2013.06.008
  • Garay I, Pocheville A, Madariaga L. Polymeric microparticles prepared by supercritical antisolvent precipitation. Powder Technology. 2010;197:211-217. DOI: 10.1016/j.powtec.2009.09.015
  • Teipel U, Kröber H, Krause H. Formation of energetic materials using supercritical fluids. Propellants, Explosives, Pyrotechnics. 2001;26:168-173. DOI: 10.1002/1521-4087
  • Reverchon E, De Marco I, Della Porta G. Tailoring of nano- and micro-particles of some superconductor precursors by supercritical antisolvent precipitation. Journal of Supercritical Fluids. 2002;23:81-87. DOI: 10.1016/S0896-8446(01)00129-2
  • Lam UT, Mammucari R, Suzuki K, Foster NR. Processing of iron oxide nanoparticles by supercritical fluids. Industrial and Engineering Chemistry Research. 2008;47:599-614. DOI: 10.1021/ie070494+
  • Reverchon E, Adami R, De Marco I, Laudani CG, Spada A. Pigment Red 60 micronization using supercritical fluids based techniques. Journal of Supercritical Fluids. 2005;35:76-82. DOI: 10.1016/j.supflu.2004.10.010
  • Werling JO, Debenedetti PG. Numerical modeling of mass transfer in the supercritical antisolvent process: miscible conditions. Journal of Supercritical Fluids. 2000;18:11-24. DOI: 10.1016/S0896-8446(99)00027-3
  • Dukhin SS, Zhu C, Pfeffer R, Luo JJ, Chavez F, Shen Y. Dynamic interfacial tension near critical point of a solvent–antisolvent mixture and laminar jet stabilization. Colloids and Surfaces A. 2003;229:181-199. DOI: 10.1016/S0927-7757(03)00326-1
  • Heater KJ, Tomasko DL. Processing of epoxy resins using carbon dioxide as an antisolvent. Journal of Supercritical Fluids. 1998;14:55-65. DOI: 10.1016/S0896-8446(98)00106-5
  • Randolph TW, Randolph AD, Mebes M, Yeung S. Sub-micrometer sized biodegradable particles of poly (L-lactic acid) via the gas antisolvent spray precipitation process. Biotechnology Progress. 1993;9:429-435. DOI: 10.1021/bp00022a010
  • Fadli T, Erriguible A, Laugier S, Subra-Paternault P. Simulation of heat and mass transfer of CO2–solvent mixtures in miscible conditions: Isothermal and non-isothermal mixing. Journal of Supercritical Fluids. 2010;52:193-202. DOI: 10.1016/j.supflu.2010.01.008
  • Kwauk X, Debenedetti PG. Mathematical modeling of aerosol formation byrapid expansion of supercritical solutions in a converging nozzle. Journal of Aerosol Science. 1993;24:445-469. DOI: 10.1016/0021-8502(93)90031-4
  • Türk M. Influence of thermodynamic behaviour and solute properties onhomogeneous nucleation in supercritical solutions. Journal of Supercritical Fluids. 2000;18:169-184. DOI: 10.1016/S0896-8446(00)00080-2
  • Helfgen B, Hils P, Holzknecht C, Türk M, Schaber K. Simulation of particle formation during the rapid expansion of supercritical solutions. Journal of Aerosol Science. 2001;32:295-319. DOI: 10.1016/S0021-8502(00)00080-X
  • Helfgen B, Türk M, Schaber K. Hydrodynamic, Aerosol modeling of the rapid expansion of supercritical solution (RESS-Process). Journal of Supercritical Fluids. 2003;26:225-242. DOI: 10.1016/S0896-8446(02)00159-6
  • Yamamoto S, Furusawa T. Thermophysical flow simulations of rapid expansion of supercritical solutions (RESS). Journal of Supercritical Fluids. 2015;97:192-201. DOI: 10.1016/j.supflu.2014.11.016
  • Perez de Diego Y, Wubbolts FE, Jansen PJ. Modelling mass transfer in the PCA process using the Maxwell–Stephan approach. Journal of Supercritical Fluids. 2006;37:53-62. DOI: 10.1016/j.supflu.2005.07.002
  • Campardelli R, Reverchon E, De Marco I. PVP microparticles precipitation from acetone-ethanol mixtures using SAS process: Effect of phase behavior. The Journal of Supercritical Fluids. 2019;143:321-329. DOI: 10.1016/j.supflu.2018.09.010
  • Balabel A, Hegab AM, Nasr M, El-Behery SM. Assessment of turbulence modeling for gas flow in two-dimensional convergent–divergent rocket nozzle. Applied Mathematical Modelling. 2010;35:3408-3422
  • Bouchard A, Jovanovic N, de Boer AH, Martín A, Jiskoot W, Crommelin DJA, et al. Effect of the spraying conditions and nozzle design on the shape and size distribution of particles obtained with supercritical fluid drying. European Journal of Pharmaceutics and Biopharmaceutics. 2008;70:389-401. DOI: 10.1016/j.ejpb.2008.03.020
  • Martín A, Cocero MJ. Numerical modeling of jet hydrodynamics, mass transfer, and crystallization kinetics in the supercritical antisolvent (SAS) process. Journal of Supercritical Fluids. 2004;32:203-219. DOI: 10.1016/j.supflu.2004.02.009
  • Bałdyga J, Kubicki D, Shekunov BY, Smithd KB. Mixing effects on particle formation in supercritical fluids. Chemical Engineering Research and Design. 2010;88:1131-1141. DOI: 10.1016/j.cherd.2010.02.016
  • Wena Z, Liua B, Zhenga Z, Youa X, Pua Y, Li Q. Preparation of liposomes entrapping essential oil from Atractylodes macrocephala Koidz by modified RESS technique. Chemical Engineering Research and Design. 2010;88:1102-1107. DOI: 10.1016/j.cherd.2010.01.020
  • Hezave AZ, Esmaeilzadeh F. Micronization of drug particles via RESS process. Journal of Supercritical Fluids. 2010;52:84-98. DOI: 10.1016/j.supflu.2008.01.019
  • Türk M, Lietzow R. Formation and stabilization of submicron particles via rapid expansion processes. Journal of Supercritical Fluids. 2008;45:346-355. DOI: 10.1016/j.supflu.2008.01.019
  • Sodeifian G, AliSajadian S. Utilization of ultrasonic-assisted RESOLV (US-RESOLV) with polymeric stabilizers for production of amiodarone hydrochloride nanoparticles: Optimization of the process parameters. Chemical Engineering Research and Design. 2019;142:268-284. DOI: 10.1016/j.cherd.2018.12.020
  • Moussa AB, Ksibi H, Baccar M. Simulation of particles transport and coagulation during the RESS process. European Physical Journal Applied Physics. 2008;43:253-261. DOI: 10.1051/epjap:2008117
  • Reverchon E, Pallado P. Hydrodynamic modeling of the RESS process. The Journal of Supercritical Fluids. 1996;9:216-221. DOI: 10.1016/S0896-8446(96)90051-0
  • A Program Package for Thermophysical Properties of Fluids, Ver. 12.1, PROPATH group
  • Yamamoto S, Furusawa T, Matsuzawa R. Numerical simulation of supercritical carbon dioxide flows across critical point. International Journal of Heat and Mass Transfer. 2011;54:774-782. DOI: 10.1016/j.ijheatmasstransfer.2010.10.030
  • Helfgen A, Türk M, Schaber K. Hydrodynamic and aerosol modelling of the rapid expansion of supercritical solutions (RESS-process). Journal of Supercritical Fluids. 2003;26:225-242. DOI: 10.1016/S0896-8446(02)00159-6