Generation of Spherical Microparticles of Moringa Leaves through a Supercritical Antisolvent Extraction Process
- 1 Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cádiz, International Excellence Agrifood Campus (CeiA3), 11510 Puerto Real, Cadiz, Spain
ISSN: 2673-4079
Datum der Publikation: 2023
Ausgabe: 4
Nummer: 2
Seiten: 143-153
Art: Artikel
Andere Publikationen in: Sustainable Chemistry
Bibliographische Referenzen
- (2020), Cienc. Tecnol. UTEQ, 13, pp. 17
- Saini, (2016), 3 Biotech, 6, pp. 203, 10.1007/s13205-016-0526-3
- Bhattacharya, (2018), J. Pharm. Bioallied Sci., 10, pp. 181, 10.4103/JPBS.JPBS_126_18
- Ammara, (2020), J. Food Biochem., 44, pp. 3400
- Pari, (2007), Pol. J. Food Nutr. Sci., 57, pp. 203
- (2020), Rinderesu, 5, pp. 965
- Brilhante, (2017), Asian Pac. J. Trop. Med., 10, pp. 621, 10.1016/j.apjtm.2017.07.002
- (2020), Agron. Colomb., 38, pp. 287, 10.15446/agron.colomb.v38n2.82644
- Mumtaz, (2021), Beni-Suef Univ. J. Basic Appl. Sci., 10, pp. 12, 10.1186/s43088-021-00101-2
- Karthivashan, (2015), Biomed Res. Int., 2015, pp. 970398, 10.1155/2015/970398
- Leone, (2015), Int. J. Mol. Sci., 16, pp. 12791, 10.3390/ijms160612791
- Promy, (2023), J. King Saud Univ.-Sci., 35, pp. 102576, 10.1016/j.jksus.2023.102576
- Montes, (2018), J. Supercrit. Fluids, 138, pp. 92, 10.1016/j.supflu.2018.04.005
- Chinnarasu, (2015), J. Supercrit. Fluids, 97, pp. 125, 10.1016/j.supflu.2014.11.008
- Baldino, (2018), J. Supercrit. Fluids, 133, pp. 65, 10.1016/j.supflu.2017.09.026
- Chinnarasu, (2015), J. Supercrit. Fluids, 101, pp. 161, 10.1016/j.supflu.2015.03.013
- Natolino, (2016), J. Supercrit. Fluids, 118, pp. 54, 10.1016/j.supflu.2016.07.015
- Meneses, (2015), J. Food Eng., 163, pp. 45, 10.1016/j.jfoodeng.2015.04.025
- Montes, (2017), J. Supercrit. Fluids, 128, pp. 218, 10.1016/j.supflu.2017.05.031
- Montes, (2019), J. CO2 Util., 31, pp. 235, 10.1016/j.jcou.2019.03.021
- Zahran, (2017), J. Supercrit. Fluids, 120, pp. 52, 10.1016/j.supflu.2016.10.011
- Carvalho, (2016), J. Supercrit. Fluids, 108, pp. 26, 10.1016/j.supflu.2015.09.012
- Machado, (2022), J. CO2 Util., 61, pp. 102010, 10.1016/j.jcou.2022.102010
- Montes, (2019), J. Supercrit. Fluids, 143, pp. 294, 10.1016/j.supflu.2018.09.007
- Visentin, (2012), J. Food Eng., 109, pp. 9, 10.1016/j.jfoodeng.2011.10.015
- Santana, (2017), J. Supercrit. Fluids, 125, pp. 31, 10.1016/j.supflu.2017.02.002
- Wei, P., Zhang, Y., Wang, Y.Y., Dong, J.F., Liao, B.N., Su, Z.C., Li, W., Xu, J.C., Lou, W.Y., and Su, H.H. (2023). Efficient extraction, excellent activity, and microencapsulation of flavonoids from Moringa oleifera leaves extracted by deep eutectic solvent. Biomass Conv. Bioref.
- Ebru, (2022), Food Biosci., 50, pp. 102158, 10.1016/j.fbio.2022.102158
- Prosapio, (2015), Ind. Eng. Chem. Res., 54, pp. 11568, 10.1021/acs.iecr.5b03504
- Scherer, (2009), Food Chem., 112, pp. 654, 10.1016/j.foodchem.2008.06.026
- Zullaikah, (2019), IOP Conf. Ser. Mater. Sci. Eng., 543, pp. 012021, 10.1088/1757-899X/543/1/012021
- Chen, (2016), Oxidative Med. Cell. Longev., 2016, pp. 3571614, 10.1155/2016/3571614
- Zduska, (2018), Skin Pharmacol. Physiol., 31, pp. 332, 10.1159/000491755
- Simunkova, M., Barbierikova, Z., Jomova, K., Hudecova, L., Lauro, P., Alwasel, S.H., Alhazza, I., Rhodes, C.J., and Valko, M. (2021). Antioxidant vs. Prooxidant Properties of the Flavonoid, Kaempferol, in the Presence of Cu(II) Ions: A ROS-Scavenging Activity, Fenton Reaction and DNA Damage Study. Int. J. Mol. Sci., 22.
- Kluska, M., Juszczak, M., Zuchowski, J., Stochmal, A., and Wozniak, K. (2022). Effect of Kaempferol and Its Glycoside Derivatives on Antioxidant Status of HL-60 Cells Treated with Etoposide. Molecules, 27.
- Murga, (2003), J. Supercrit. Fluids, 27, pp. 239, 10.1016/S0896-8446(02)00265-6
- (2018), Food Technol. Biotechnol., 56, pp. 480
- Paula, (2016), J. Supercrit. Fluids, 112, pp. 89, 10.1016/j.supflu.2016.02.014