Sumabilidad y lineabilidad en espacios normados

  1. Pérez Eslava, María del Consuelo
Supervised by:
  1. F. Javier Pérez Fernández Director
  2. Antonio Aizpuru Tomás Director
  3. Juan Benigno Seoane Sepúlveda Director

Defence university: Universidad de Cádiz

Fecha de defensa: 23 September 2010

Committee:
  1. Juan Luis Romero Romero Chair
  2. Fernando León Saavedra Secretary
  3. Juan Carlos Navarro Pascual Committee member
  4. El Amin Kaidi Lhachmi Committee member
  5. Gustavo Adolfo Muñoz Fernández Committee member
Department:
  1. Matemáticas

Type: Thesis

Teseo: 297464 DIALNET

Abstract

La Tesis Doctoral se ha desarrollado en los campos de investigación de la sumabilidad y la lineabilidad en espacios normados, unidos ambos temas, por el nexo inicial común, del estudio de la lineabilidad en determinados tipos de series. A lo largo del trabajo abordamos los problemas de caracterización de las series débil incondicionalmente de Cauchy (wuC) a través de los espacios de sumabilidad matricial tanto en la topología de la norma como en las topologías débiles; a tal fin, para una serie \zeta en un espacio normado X definimos los espacios de A-sumabilidad S_A(\zeta), sumabilidad débil S_{Aw}(\zeta) y sumabilidad estrella débil S_{A*w}(\zeta), siendo A una matriz infinita regular. También estudiamos a través de estos espacios, diferentes propiedades del espacio normado X, como la completitud o la tonelación. Y tratamos generalizaciones del teorema de Orlicz-Pettis y teoremas de tipo Hahn-Schur, generalizando resultados de convergencia uniforme de series incondicionalmente convergente (uc) a series débil incondicionalmente de Cauchy (wuC). De este modo, por ejemplo, hemos logrado caracterizar a las series wuC mediante la completitud de los espacios S_A(\zeta) y S_{Aw}(\zeta). Así mismo la completitud del espacio normado queda caracterizada por la completitud tanto de S_A(\zeta) como de S_{Aw}(\zeta), para cada serie \zeta wuC que se considere. También obtenemos una caracterización de las series en el dual de X mediante el espacio S_{A*w}(\zeta). Hemos probado que la convergencia incondicional de una serie (uc) equivale a la subserie sumabilidad débil matricial. Fijada una cierta matriz infinita A regular y fijado un espacio S de sucesiones escalares acotadas que contenga a c_0 consideramos los espacios X(S,A) ( y resp. X_w(S,A) ) como los espacios de sucesiones vectoriales \zeta tal que la serie resultado de multiplicar, término a término, \zeta por cada sucesión (a_i)_i de S es A-sumable (análogamente es A-débilmente sumable). Probamos que con una apropiada norma ambos espacios son completos y obtenemos dos condiciones suficientes para la convergencia uniforme de series wuC, generalizando los Teoremas de Hahn-Schur y Swartz obtenidos para series uc. En el campo de la lineabilidad, estudiamos la lineabilidad de espacios de series y sucesiones escalares, estudiamos la lineabilidad de espacios de series vectoriales y la lineabilidad de funciones discontinuas en R. En relación con series y sucesiones escalares probamos, en particular: que las series condicionalmente convergentes son c-lineables en el espacio de las series convergentes, que las series no convergentes son c-lineables en el espacio de las series con sumas parciales acotadas y que las sucesiones no convergentes son c-lineables en el espacio de las sucesiones acotadas. Para series vectoriales, probamos que las series wuC en c_0 que no convergen débilmente son c-lineables, así como la c-lineabilidad de las series absolutamente divergentes y las incondicionalmente convergentes. Finalmente nos preocupamos del problema de la lineabilidad de funciones discontinuas en R. Introducimos un nuevo concepto, el de coneabilidad (un subconjunto de R^R es coneable si contiene a un cono conteniendo, a su vez, un conjunto infinito y linealmente independiente). Estudiamos la lineabilidad del conjunto de todas las funciones cuyos puntos de discontinuidad son un conjunto F_{\sigma} prefijado F. Si F_{\sigma} es cerrado el conjunto de las funciones cuyos puntos de discontinuidad es F es lineable y si no es cerrado será coneable. Análogos resultados se obtienen para funciones discontinuas integrables Riemann cuyos puntos de discontinuidad son exactamente los de un conjunto F_{\sigma} de medida cero. Para funciones de I en R con discontinuidades evitables o de salto en un cierto punto de I, probamos que si tienen una discontinuidad evitable es 1-lineable, si tienen una discontinuidad de salto es 1-lineable y que el conjunto de tales funciones de I en R que o tienen una discontinuidad de salto o evitable es 2-lineable.