Supporting vectors for the l1 norm and the l∞ norm and an application

  1. Sánchez-Alzola, Alberto
  2. García-Pacheco, Francisco Javier
  3. Naranjo-Guerra, Enrique
  4. Moreno-Pulido, Soledad
  1. 1 Department of Statistics and Operation Research, Collegeof Engineering, University of Cadiz, Puerto Real 11510,Spain
  2. 2 Universidad de Cádiz
    info

    Universidad de Cádiz

    Cádiz, España

    ROR https://ror.org/04mxxkb11

Revista:
Mathematical Sciences

ISSN: 2008-1359 2251-7456

Año de publicación: 2021

Volumen: 15

Número: 2

Páginas: 173-187

Tipo: Artículo

DOI: 10.1007/S40096-021-00400-W GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Mathematical Sciences

Resumen

A supporting vector of a matrix A for a certain norm II . II on Rn is a vector x such that II x II = 1 and II Ax II = II A II = max II y II = 1 II Ay II. In this manuscript, we characterize the existence of supporting vectors in the infinite-dimensional case for both the l1 -norm and the l∞ -norm. Besides this characterization, our theorems provide a description of the set of supporting vectors for operators on l∞ and l1. As an application of our results in the finite-dimensional case for both the l1 -norm and the l∞ -norm, we study meteorological data from stations located on the province of Cádiz (Spain). For it, we consider a matrix database with the highest temperature deviations of these stations.

Referencias bibliográficas

  • Aizpuru, A., García-Pacheco, F.J.: A short note about exposed points in real Banach spaces. Acta Math. Sci. Ser. B (Engl. Ed.) 28(4), 797–800 (2008). https://doi.org/10.1016/S0252-9602(08)60080-6
  • Bishop, E., Phelps, R.R.: A proof that every Banach space is subreflexive. Bull. Am. Math. Soc. 67, 97–98 (1961). https://doi.org/10.1090/S0002-9904-1961-10514-4
  • Bishop, E., Phelps, R.R.: The support functionals of a convex set. In: Proc. Sympos. Pure Math., Vol. VII, pp. 27–35. American Mathematical Society, Providence, R.I. (1963)
  • Bourin, J.C.: Some inequalities for norms on matrices and operators. Linear Algebra Appl. 292(1–3), 139–154 (1999). https://doi.org/10.1016/S0024-3795(99)00024-5
  • Cobos Sánchez, C., Garcia-Pacheco, F.J., Guerrero Rodriguez, J.M., Hill, J.R.: An inverse boundary element method computational framework for designing optimal TMS coils. Eng. Anal. Bound. Elem. 88, 156–169 (2018). https://doi.org/10.1016/j.enganabound.2017.11.002
  • Cobos-Sánchez, C., García-Pacheco, F.J., Moreno-Pulido, S., Sáez-Martínez, S.: Supporting vectors of continuous linear operators. Ann. Funct. Anal. 8(4), 520–530 (2017). https://doi.org/10.1215/20088752-2017-0016
  • Fong, C.K., Radjavi, H., Rosenthal, P.: Norms for matrices and operators. J. Operator Theory 18(1), 99–113 (1987)
  • Garcia-Pacheco, F.J., Cobos-Sanchez, C., Moreno-Pulido, S., Sanchez-Alzola, A.: Exact solutions to $$\max _{\Vert x\Vert =1}\sum ^\infty _{i=1}\Vert T_i(x)\Vert ^2$$ with applications to Physics, Bioengineering and Statistics. Commun. Nonlinear Sci. Numer. Simul. 82, 105054 (2020). https://doi.org/10.1016/j.cnsns.2019.105054
  • García-Pacheco, F.J., Puglisi, D.: Lineability of functionals and operators. Studia Math. 201(1), 37–47 (2010). https://doi.org/10.4064/sm201-1-3
  • García-Pacheco, F.J., Naranjo-Guerra, E.: Supporting vectors of continuous linear projections. Int. J. Funct. Anal. Operator Theory Appl. 9(3), 85–95 (2017)
  • James, R.C.: Characterizations of reflexivity. Studia Math. 23, 205–216 (1963/64). https://doi.org/10.4064/sm-23-3-205-216
  • Lindenstrauss, J.: On operators which attain their norm. Israel J. Math. 1, 139–148 (1963). https://doi.org/10.1007/BF02759700
  • Marin, L., Power, H., Bowtell, R.W., Cobos Sanchez, C., Becker, A.A., Glover, P., Jones, A.: Boundary element method for an inverse problem in magnetic resonance imaging gradient coils. CMES Comput. Model. Eng. Sci. 23(3), 149–173 (2008)
  • Marin, L., Power, H., Bowtell, R.W., Cobos Sanchez, C., Becker, A.A., Glover, P., Jones, I.A.: Numerical solution of an inverse problem in magnetic resonance imaging using a regularized higher-order boundary element method. In: Boundary Elements and Other Mesh Reduction Methods XXIX, WIT Transaction Modelling and Simulation, vol. 44, pp. 323–332. WIT Press, Southampton (2007). https://doi.org/10.2495/BE070311
  • Megginson, R.E.: An introduction to Banach space theory, Graduate Texts in Mathematics, vol. 183. Springer-Verlag, New York (1998). https://doi.org/10.1007/978-1-4612-0603-3
  • Moreno-Pulido, S., Garcia-Pacheco, F.J., Cobos-Sanchez, C., Sanchez-Alzola, A.: Exact solutions to the maxmin problem $$ \max \Vert ax\Vert $$ subject to $$\Vert bx\Vert \le 1$$. Mathematics 8(1), 85 (2020). https://doi.org/10.3390/math8010085
  • Saluev, T., Sitdikov, I.: Generic properties and a criterion of an operator norm. Linear Algebra Appl. 485, 1–20 (2015). https://doi.org/10.1016/j.laa.2015.07.020
  • Sánchez, C.C., Garcia-Pacheco, F.J., Guerrero-Rodriguez, J.M., Garcia-Barrachina, L.: Solving an IBEM with supporting vector analysis to design quiet TMS coils. Eng. Anal. Bound. Elem. 117, 1–12 (2020). https://doi.org/10.1016/j.enganabound.2020.04.013
  • Sánchez, C.C., Rodriguez, J.M.G., Olozábal, Á.Q., Blanco-Navarro, D.: Novel TMS coils designed using an inverse boundary element method. Phys. Med. Biol. 62(1), 73–90 (2016). https://doi.org/10.1088/1361-6560/62/1/73